题目内容
等差数列{an} 中,a1=3,前n项和为Sn,等比数列 {bn}各项均为正数,b1=1,且b2+S2=12,{bn}的公比q=
.
(1)求an与bn;
(2)求数列{
}的前n项和.
| S2 |
| b2 |
(1)求an与bn;
(2)求数列{
| 1 |
| Sn |
(1)由已知得b2=b1q=q,所以有
,(3分)
解方程组得,q=3或q=-4(舍去),a2=6(5分)
∴an=3+3(n-1)=3n,bn=3n-1 (7分)
(2)∵Sn=
,∴
=
=
(
-
)(10分)
∴
+
+…+
=
(1-
+
-
+…+
-
)=
(1-
)=
(14分)
|
解方程组得,q=3或q=-4(舍去),a2=6(5分)
∴an=3+3(n-1)=3n,bn=3n-1 (7分)
(2)∵Sn=
| n(3+3n) |
| 2 |
| 1 |
| Sn |
| 2 |
| n(3+3n) |
| 2 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
∴
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 2 |
| 3 |
| 1 |
| n+1 |
| 2n |
| 3n+3 |
练习册系列答案
相关题目