题目内容
13.数列{an}的前n项和是Sn,若数列{an}的各项按如下规则排列:$\frac{1}{2}$,$\frac{1}{3}$,$\frac{2}{3}$,$\frac{1}{4}$,$\frac{2}{4}$,$\frac{3}{4}$,$\frac{1}{5}$,$\frac{2}{5}$,$\frac{3}{5}$,$\frac{4}{5}$,$\frac{1}{6}$,…,若Sk<10,Sk+1≥10,则ak=$\frac{5}{7}$.分析 把原数列分成$\frac{1}{2}$;$\frac{1}{3}$,$\frac{2}{3}$;$\frac{1}{4}$,$\frac{2}{4}$,$\frac{3}{4}$;$\frac{1}{5}$,$\frac{2}{5}$,$\frac{3}{5}$,$\frac{4}{5}$;$\frac{1}{6}$,…,构建新数列bn=n,由此利用Sk<10,Sk+1≥10,能求出ak.
解答 解:把原数列分成$\frac{1}{2}$;$\frac{1}{3}$,$\frac{2}{3}$;$\frac{1}{4}$,$\frac{2}{4}$,$\frac{3}{4}$;$\frac{1}{5}$,$\frac{2}{5}$,$\frac{3}{5}$,$\frac{4}{5}$;$\frac{1}{6}$,…,
发现它们的个数是1,2,3,4,5,…
构建新数列bn,则bn=n等差数列,记bn的前n项和为Tn,
由等差数列的前n项和得T5=$\frac{5(1+5)}{2}$=$\frac{15}{2}$,${T}_{6}=\frac{6(1+6)}{2}=\frac{21}{2}$,
∵Sk<10,Sk+1≥10,
∴ak定在$\frac{1}{7},\frac{2}{7},\frac{3}{7},\frac{4}{7},\frac{5}{7},\frac{6}{7}$之中,
∵${T}_{5}+\frac{1}{7}+\frac{2}{7}+\frac{3}{7}+\frac{4}{7}+\frac{5}{7}$=9+$\frac{9}{14}$<10,
${T}_{5}+\frac{1}{7}+\frac{2}{7}+\frac{3}{7}+\frac{4}{7}+\frac{5}{7}+\frac{6}{7}$=10+$\frac{1}{2}$>10,
∴ak=$\frac{5}{7}$.
故答案为:$\frac{5}{7}$.
点评 本题考查数列的第k项的求法,是中档题,解题时要认真审题,注意等差数列的性质和归纳整理的性质的合理运用.
| A. | -4 | B. | -2 | C. | -1 | D. | 0 |
| A. | 3506位数 | B. | 4518位数 | C. | 6953位数 | D. | 7045位数 |
| A. | 51 | B. | 17 | C. | 9 | D. | 3 |
| A. | $\frac{5}{10}+\frac{5}{{{{10}^2}}}+\frac{7}{{{{10}^3}}}+\frac{3}{{{{10}^4}}}$ | B. | $\frac{5}{10}+\frac{5}{{{{10}^2}}}+\frac{7}{{{{10}^3}}}+\frac{2}{{{{10}^4}}}$ | ||
| C. | $\frac{7}{10}+\frac{9}{{{{10}^2}}}+\frac{8}{{{{10}^3}}}+\frac{8}{{{{10}^4}}}$ | D. | $\frac{7}{10}+\frac{9}{{{{10}^2}}}+\frac{9}{{{{10}^3}}}+\frac{1}{{{{10}^4}}}$ |