题目内容

已知p:|x-4|≤6,q:x2-2x+1-m2≤0(m>0),若¬p是¬q必要不充分条件,则m的取值范围为
m≥9.
m≥9.
分析:由绝对值不等式及一元二次不等式的解法,得到p,q的等价命题.又由¬p是¬q的必要而不充分条件的等价命题为:p是q的充分不必要条件,再由判断充要条件的方法,我们可知命题“x∈A”是命题“x∈B”的充分不必要条件,则A?B,进而得到m的取值范围.
解答:解:由题知,若?p是?q的必要不充分条件的等价命题为:p是q的充分不必要条件.
由|x-4|≤6,解得-2≤x≤10,
∴p:-2≤x≤10;
由x2-2x+1-m2≤0(m>0),整理得[x-(1-m)][x-(1+m)]≤0
解得 1-m≤x≤1+m,
∴q:1-m≤x≤1+m
又∵p是q的充分不必要条件
1-m≤-2
1+m≥10
m≥1
m≥9
,∴m≥9,
∴实数m的取值范围是[9,+∞).
故答案为:m≥9;
点评:本题考查的判断充要条件的方法,但解题的关键是绝对值不等式及一元二次不等式的解法.我们可以根据充要条件的定义进行判断;
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网