题目内容
已知数列{an}的首项是a1=1,前n项和为Sn,且Sn+1=2Sn+3n+1(n∈N*).(1)设bn=an+3(n∈N*),求数列{bn}的通项公式;
(2)设cn=log2bn,若存在常数k,使不等式k≥
| cn-1 | (n+25)cn |
分析:(1))∵Sn+1=2Sn+3n+1,∴当n≥2时,Sn=2Sn-1+3(n-1)+1,两式相减得an+1=2an+3,从而bn+1=an+1+3=2(an+3)=2bn(n≥2),由此可以导出数列{bn}的通项公式.
(2)由题意知cn=log2bn=log24×2n-1=log22n+1,再用均值不等式进行求解.
(2)由题意知cn=log2bn=log24×2n-1=log22n+1,再用均值不等式进行求解.
解答:解:(1)∵Sn+1=2Sn+3n+1,
∴当n≥2时,Sn=2Sn-1+3(n-1)+1,两式相减得an+1=2an+3,从而bn+1=an+1+3=2(an+3)=2bn(n≥2),
∵S2=2S1+3+1,
∴a2=a1+4=5,可知b2≠0.
∴bn≠0
.
∴
=2(n≥2),又
=
=
=2.
∴数列{bn}是公比为2,首项为4的等比数列,
因此bn=4•2n-1=2n+1(n∈N*)
(2)据(1)cn=log2bn=log24×2n-1=log22n+1=n+1
=
=
=
≤
=
,(当且仅当n=5时取等号).
故不等式k≥
(n∈N*)恒成立,?k≥
.
∴当n≥2时,Sn=2Sn-1+3(n-1)+1,两式相减得an+1=2an+3,从而bn+1=an+1+3=2(an+3)=2bn(n≥2),
∵S2=2S1+3+1,
∴a2=a1+4=5,可知b2≠0.
∴bn≠0
|
∴
| bn+1 |
| bn |
| b2 |
| b1 |
| a2+3 |
| a1+3 |
| 8 |
| 4 |
∴数列{bn}是公比为2,首项为4的等比数列,
因此bn=4•2n-1=2n+1(n∈N*)
(2)据(1)cn=log2bn=log24×2n-1=log22n+1=n+1
| cn-1 |
| (n+25)cn |
| n+1-1 |
| (n+25)(n+1) |
| n |
| (n+25)(n+1) |
| 1 | ||
n+
|
| 1 |
| 2×5+26 |
| 1 |
| 36 |
故不等式k≥
| cn-1 |
| (n+25)cn |
| 1 |
| 36 |
点评:本题考查数列的综合运用,解题时要注意均值不等式的合理运用.
练习册系列答案
相关题目