题目内容

已知锐角△ABC中,sin(A+B)=
3
5
sin(A-B)=
1
5

求:tanB的值.
分析:把已知的两等式分别利用两角和与差的正弦函数公式化简,将化简后的两等式组成方程组,两方程相加相减可得出sinAcosB及cosAsinB的值,两式相除并利用同角三角函数间的基本关系可得到tanA与tanB的关系,由三角形为锐角三角形,得到C的范围,根据三角形的内角和定理得出A+B的范围,由sin(A+B)的值,利用同角三角函数间的基本关系求出cos(A+B)的值,再利用同角三角函数间的基本关系弦化切求出tan(A+B)的值,然后利用两角和与差的正切函数公式化简tan(A+B),将得出的tanA的关系式代入得到关于tanB的方程,求出方程的解即可得到tanB的值.
解答:解:由sin(A+B)=
3
5
,sin(A-B)=
1
5
得:
sinAcosB+cosAsinB=
3
5
sinAcosB-cosAsinB=
1
5

①+②得:2sinAcosB=
4
5
,即sinAcosB=
2
5
③,
①-②得:2cosAsinB=
2
5
,即cosAsinB=
1
5
④,
③÷④得:
tanA
tanB
=2
,即tanA=2tanB,
∵锐角△ABC,∴0<C<
π
2

π
2
<A+B<π
,又sin(A+B)=
3
5

∴cos(A+B)=-
1-sin2(A+B)
=-
4
5

tan(A+B)=-
3
4
,即
tanA+tanB
1-tanAtanB
=-
3
4

将tanA=2tanB代入上式并整理得:2tan2B-4tanB-1=0,
解得:tanB=
2+
6
2
tanB=
2-
6
2
(舍去),
则tanB=
2+
6
2
点评:此题考查了两角和与差的正弦、正切函数公式,同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键,同时注意锐角三角形这个条件.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网