题目内容

精英家教网如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于
 
分析:根据已知EF∥平面AB1C和线面平行的性质定理,证明EF∥AC,又点E为AD的中点,点F在CD上,以及三角形中位线定理可知点F是CD的中点,从而求得线段EF的长度.
解答:精英家教网解:∵EF∥平面AB1C,EF⊆平面AC,平面AB1C∩平面AC=AC,
∴EF∥AC,
又点E为AD的中点,点F在CD上,
∴点F是CD的中点,
∴EF=
1
2
AC=
2

故答案为
2
点评:此题是个基础题.考查线面平行的性质定理,同时考查学生对基础知识的记忆、理解和熟练应用的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网