题目内容

已知向量
a
=(cos x,0),
b
=(0,sin x),记函数f(x)=(
a
+
b
2+sin 2x,
(1)求函数f(x)的最大值和取最小值;
(2)若不等式|f(x)-t|<2在x∈[
π
4
π
2
]
上有解,求实属t的取值范围.
(1)∵f(x)=(
a
+
b
2+sin 2x=1+sin2x
∵-1≤sin2x≤1
∴0≤f(x)≤2
∴函数f(x)的最小值是0,f(x)的最大值是2
(2)∵x∈[
π
4
π
2
]

∴sin2x∈[0,1]
∵|f(x)-t|=|sin2x-t+1|<2在x∈[
π
4
π
2
]
上有解,
∴t-3<sin2x<1+t
t-3≤0
t+1≥1

∴0≤t≤3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网