题目内容
9.若正方形ABCD的边长为1,且$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{BC}=\overrightarrow b,\overrightarrow{AC}$=$\overrightarrow c$,则$|{3\overrightarrow a+2\overrightarrow b-6\overrightarrow c}$|=5.分析 可画出图形,而根据$|3\overrightarrow{a}+2\overrightarrow{b}-6\overrightarrow{c}|$=$\sqrt{(3\overrightarrow{a}+2\overrightarrow{b}-6\overrightarrow{c})^{2}}$进行数量积的计算即可求得答案.
解答
解:如图,
$|3\overrightarrow{a}+2\overrightarrow{b}-6\overrightarrow{c}|=\sqrt{(3\overrightarrow{a}+2\overrightarrow{b}-6\overrightarrow{c})^{2}}$=$\sqrt{9{\overrightarrow{a}}^{2}+4{\overrightarrow{b}}^{2}+36{\overrightarrow{c}}^{2}+12\overrightarrow{a}•\overrightarrow{b}-36\overrightarrow{a}•\overrightarrow{c}-24\overrightarrow{b}•\overrightarrow{c}}$=$\sqrt{9+4+72+0-36-24}=5$.
故答案为:5.
点评 考查求向量长度的方法:|$\overrightarrow{a}$|=$\sqrt{{\overrightarrow{a}}^{2}}$,以及数量积的计算公式.
练习册系列答案
相关题目
17.微信是现代生活进行信息交流的重要工具,对某城市年龄在20岁至60岁的微信用户进行有关调查发现,有$\frac{1}{3}$的用户平均每天使用微信时间不超过1小时,其他人都在1小时以上;若将这些微信用户按年龄分成青年人(20岁至40岁)和中年人(40岁至60岁)两个阶段,那么其中$\frac{3}{4}$是青年人;若规定:平均每天使用微信时间在1小时以上为经常使用微信,经常使用微信的用户中有$\frac{2}{3}$是青年人.
(I)现对该市微信用户进行“经常使用微信与年龄关系”的调查,采用随机抽样的方法选取容 量为l80的一个样本,假设该样本有关数据与调查结果完全相同,列出2×2列联表.
(Ⅱ)由列表中的数据,是否有99.9%的把握认为“经常使用微信与年龄有关”?
(Ⅲ)从该城市微信用户中任取3人,其中经常使用微信的中年人人数为X,求出X的期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
(I)现对该市微信用户进行“经常使用微信与年龄关系”的调查,采用随机抽样的方法选取容 量为l80的一个样本,假设该样本有关数据与调查结果完全相同,列出2×2列联表.
| 青年人 | 中年人 | 合计 | |
| 经常使用微信 | |||
| 不经常使用微信 | |||
| 合计 |
(Ⅲ)从该城市微信用户中任取3人,其中经常使用微信的中年人人数为X,求出X的期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
| P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
1.已知复数z=$\frac{\sqrt{3}-i}{1+\sqrt{3}i}$,则|z|=( )
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{16}$ |
18.已知双曲线M:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$两个焦点为分别为${F_1}(-\sqrt{3},0),{F_2}(\sqrt{3},0)$,过点F2的直线l与该双曲线的右支交于M、N两点,且△F1MN是等边三角形,则以点F2为圆心,与双曲线M的渐近线相切的圆的方程为( )
| A. | ${(x-\sqrt{3})^2}+{y^2}=2$ | B. | ${(x-\sqrt{3})^2}+{y^2}=4$ | C. | ${(x-\sqrt{3})^2}+{y^2}=1$ | D. | ${(x-\sqrt{3})^2}+{y^2}=\frac{3}{5}$ |