题目内容
15.等差数列{an}的前3项和为20,最后3项和为130,所有项的和为200,则项数n为8.分析 由已知可得:a1+a2+a3=20,an-2+an-1+an=130,3(a1+an)=20+130,解得a1+an.再利用求和公式即可得出.
解答 解:由已知可得:a1+a2+a3=20,an-2+an-1+an=130,
∴3(a1+an)=20+130,解得a1+an=50.
∴Sn=$\frac{n({a}_{1}+{a}_{n})}{2}$=25n=200,解得n=8.
故答案为:8.
点评 本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
6.已知函数f(x)=2cosx(sinx-cosx)+1的定义域为[a,b],值域为$[{-\sqrt{2},\frac{{\sqrt{2}}}{2}}]$,则b-a的值不可能是( )
| A. | $\frac{5π}{12}$ | B. | $\frac{π}{2}$ | C. | $\frac{7π}{12}$ | D. | π |
3.将函数y=3sin(2x+$\frac{π}{3}$)的图象向左平移$\frac{π}{4}$个单位,所得图象对应的函数( )
| A. | 在区间[$\frac{π}{12}$,$\frac{7π}{12}$]上单调递增 | B. | 在区间[$\frac{π}{12}$,$\frac{7π}{12}$]上单调递减 | ||
| C. | 在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递增 | D. | 在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递减 |
11.已知B(m,2b)是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=l(a>0,b>0)的右支上一点,A为右顶点,O为坐标原点,若∠AOB=60°,则该双曲线的渐近线方程为( )
| A. | y=±$\frac{{\sqrt{10}}}{2}x$ | B. | y=±$\frac{{\sqrt{13}}}{2}x$ | C. | y=±$\frac{{\sqrt{15}}}{2}x$ | D. | y=±$\frac{{\sqrt{19}}}{2}x$ |
8.已知集合A={x|x2-5x+6≤0},集合B={x|2x>4},则集合A∩B=( )
| A. | {x|2≤x≤3} | B. | {x|2≤x<3} | C. | {x|2<x≤3} | D. | {x|2<x<3} |