题目内容

4.已知等差数列{an}的公差d≠0,首项a1=4,a1,a3,a7成等比数列,设数列{an}的前n项和为Sn(n∈N).
(I)求an和Sn
(II)若bn=$\left\{\begin{array}{l}{{a}_{n}(2{S}_{n}<5{a}_{n})}\\{\frac{1}{{S}_{n}}(2{S}_{n}>5{a}_{n})}\end{array}\right.$数列{bn}的前n项和Tn,求证4≤Tn<18$\frac{37}{180}$.

分析 (I)化简可得(4+2d)2=4(4+6d),从而求得d=2;从而求an和Sn
(II)可求得2Sn-5an=2[(n-1)2-6],从而化简得bn=$\left\{\begin{array}{l}{2(n+1),1≤n≤3}\\{\frac{1}{n(n+3)},n≥4}\end{array}\right.$;从而分类讨论求Tn,从而证明.

解答 解:(I)由题意知,a3=4+2d,a7=4+6d,
故(4+2d)2=4(4+6d),
解得,d=0(舍去)或d=2;
故an=4+2(n-1)=2(n+1),
Sn=$\frac{4+2n+2}{2}$n=n(n+3);
(II)证明:∵2Sn-5an=2n(n+3)-5×2(n+1)=2[(n-1)2-6],
∴当n<4时,2Sn<5an,当n≥4时,2Sn>5an
∴bn=$\left\{\begin{array}{l}{2(n+1),1≤n≤3}\\{\frac{1}{n(n+3)},n≥4}\end{array}\right.$;
①当1≤n≤3时,
T1=4,T2=10,T3=4+6+8=18;
②当n≥4时,
Tn=18+$\frac{1}{4×7}$+$\frac{1}{5×8}$+$\frac{1}{6×9}$+$\frac{1}{7×10}$+…+$\frac{1}{n(n+3)}$,
=18+$\frac{1}{3}$($\frac{1}{4}$-$\frac{1}{7}$+$\frac{1}{5}$-$\frac{1}{8}$+$\frac{1}{6}$-$\frac{1}{9}$+$\frac{1}{7}$-$\frac{1}{10}$+…+$\frac{1}{n}$-$\frac{1}{n+3}$)
=18+$\frac{1}{3}$($\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$-$\frac{1}{n+3}$)
<18+$\frac{1}{3}$($\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$)=18$\frac{37}{180}$;
综上所述,4≤Tn<18$\frac{37}{180}$.

点评 本题考查了等差数列与等比数列的应用,同时考查了分类讨论的思想应用及方程思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网