题目内容
【题目】已知函数
.
(1)若任意
,不等式
恒成立,求实数
的取值范围;
(2)求证:对任意
,
,都有
成立;
(3)对于给定的正数
,有一个最大的正数
,使得整个区间
上,不等式
恒成立,求出
的解析式.
【答案】(1)
;(2)见解析;(3)![]()
【解析】试题分析:
(1)由题意令
,则
,可得
,即可求解实数
的取值范围;
(2)对任意
,
,作差化简
,即可.
(3)由题意得
,由不等式
恒成立得
且
,结合二次函数的图象,分类讨论,即可求解
的表达式.
试题解析:
(1)因为
,
恒成立,令
,
,则![]()
所以
,解得![]()
(2)对任意
,
,
![]()
, ![]()
(3)
对称轴
,
由不等式
恒成立得
且![]()
![]()
因为
,当
,即
时,则
,
在
为减函数.
由题意知:
由
且
,解得: ![]()
所以
时, ![]()
当
,即
时,则
总成立![]()
由题意得:
,
在
为减函数,
在
为增函数,
又
,则
, ![]()
由
,
解得
,所以
时, ![]()
综上![]()
点睛:本题考查了函数的综合应用,解答中涉及到不等式的恒成立问题的求解,不等式的性质的应用,以及二次函数的图象与性质的应用,解答中把不等式的恒成立问题转化为函数的最值问题是解答的关键,试题综合性强,属于中档试题.
练习册系列答案
相关题目
【题目】某手机卖场对市民进行国产手机认可度的调查,随机抽取
名市民,按年龄(单位:岁)进行统计和频数分布表和频率分布直线图如下:
分组(岁) | 频数 |
|
|
|
|
|
|
|
|
|
|
合计 |
|
![]()
(1)求频率分布表中
、
的值,并补全频率分布直方图;
(2)在抽取的这
名市民中,按年龄进行分层抽样,抽取
人参加国产手机用户体验问卷调查,现从这
人中随机选取
人各赠送精美礼品一份,设这
名市民中年龄在
内的人数
,求
的分布列及数学期望.