题目内容

已知A、B、C的坐标分别为A(4,0)、B(0,4)、C(3cosα,3sinα)
(Ⅰ)若a∈(-π,0),且||=||.求角α的值;
(Ⅱ)若=0.求的值.
【答案】分析:(Ⅰ)求向量,利用向量的模相等.得到方程即可求角α的值;
(Ⅱ)通过=0.化简得到关系式,然后找出与求的值有关的函数值即可求解.
解答:解:=(3cosα-4,3sinα);=(3cosα,3sinα-4)…(2分)
(Ⅰ)||=||.得(3cosα-4)2+9sin2α=9cos2α+(3sinα-4)2
∴sinα=cosα…(5分)
因为a∈(-π,0),所以…(7分)
(Ⅱ)∵==2sinαcosα…(9分)
=0,∴3cosα(3cosα-4)+3sinα(3sinα-4)=0…(11分)
∴sinα+cosα=,两边平方可得:2sinαcosα=

=…(13分)
点评:本题考查三角函数的化简求值,同角三角函数的基本关系式的应用,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网