题目内容
(理)等差数列{an}中,首项a1=1,公差d≠0,已知数列ak1,ak2,ak3,…,akn,…成等比数列,其中k1=1,k2=2,k3=5.
(1)求数列{an},{kn}的通项公式;
(2)当n∈N+,n≥2时,求证:
+
+
+…+
<
.
(1)求数列{an},{kn}的通项公式;
(2)当n∈N+,n≥2时,求证:
| a2 |
| 2k2-2 |
| a3 |
| 2k3-2 |
| a4 |
| 2k4-2 |
| an |
| 2kn-2 |
| 8 |
| 3 |
分析:(1)由题意可得a22=a1•a5,从而可求d=2,故可求an=2n-1,从而akn=2kn-1,又等比数列中,公比a=
=3,所以 akn=3n-1,故可求{kn}的通项公式;
(2)先考虑通式:
=
(m∈N+,m≥2),可得m=2时,
=3,m≥3时,
<
,再采用错位相减法即可求和证得.
| a2 |
| a1 |
(2)先考虑通式:
| am |
| 2km-2 |
| 2m-1 |
| 3m-1-1 |
| 2m-1 |
| 3m-1-12 |
| 2m-1 |
| 3m-1-1 |
| 2m |
| 3m-1 |
解答:解:(1)a22=a1•a5⇒(1+d)2=1•(1+4d)⇒d=2,∴an=2n-1,
∴akn=2kn-1,
又等比数列中,公比a=
=3,所以 akn=3n-1,
∴2kn-1=3n-1⇒kn=
…(6分)
证明:(2)
=
(m∈N+,m≥2),
m=2时,
=3,m≥3时,∵3m-1>2m,∴
<
,…(9分)
记Sn=
+
+
+…+
,则
Sn=
+
+
+…+
,
相减得到:
Sn=
+
+
+…+
-
=
+
-
,
所以Sn=1+
-
-
<
…(13分)
所以
+
+
+…+
<
+
+
+
+…+
<
+
=
.…(14分)
∴akn=2kn-1,
又等比数列中,公比a=
| a2 |
| a1 |
∴2kn-1=3n-1⇒kn=
| 3n-1+1 |
| 2 |
证明:(2)
| am |
| 2km-2 |
| 2m-1 |
| 3m-1-1 |
m=2时,
| 2m-1 |
| 3m-1-12 |
| 2m-1 |
| 3m-1-1 |
| 2m |
| 3m-1 |
记Sn=
| 6 |
| 32 |
| 8 |
| 33 |
| 10 |
| 34 |
| 2 |
| 3n-1 |
| 1 |
| 3 |
| 6 |
| 33 |
| 8 |
| 34 |
| 10 |
| 35 |
| 2n |
| 3n |
相减得到:
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 33 |
| 2 |
| 34 |
| 2 |
| 3n-1 |
| 2n |
| 3n |
| 2 |
| 3 |
| ||||
1-
|
| 2n |
| 3n |
所以Sn=1+
| 1 |
| 6 |
| 3 |
| 2•3n-1 |
| n |
| 3n-1 |
| 7 |
| 6 |
所以
| a2 |
| 2k2-2 |
| a3 |
| 2k3-2 |
| a4 |
| 2k4-2 |
| an |
| 2kn-2 |
| 3 |
| 2 |
| 6 |
| 32 |
| 8 |
| 33 |
| 10 |
| 34 |
| 2n |
| 3n-1 |
| 3 |
| 2 |
| 7 |
| 6 |
| 8 |
| 3 |
点评:本题以数列为载体,综合考查等差数列与等比数列,考查放缩法的运用,考查数列与不等式,综合性强.
练习册系列答案
相关题目