题目内容
设函数f(x)=x-xlnx.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若方程f(x)=t在[
,e]上有两个实数解,求实数t的取值范围.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若方程f(x)=t在[
| 1 |
| e |
(Ⅰ)f′(x)=1-(lnx+1)=-lnx,
令f′(x)>0,得0<x<1,令f′(x)<0,得x>1,
∴f(x)的增区间为(0,1],减区间为[1,+∞).
(Ⅱ)由(Ⅰ)知:当x=1时,f(x)取得极大值为1,
f(
)=
,f(e)=0,
由函数f(x)=x-xlnx与f(x)=t的图象知
实数t的取值范围为[
,1).
令f′(x)>0,得0<x<1,令f′(x)<0,得x>1,
∴f(x)的增区间为(0,1],减区间为[1,+∞).
(Ⅱ)由(Ⅰ)知:当x=1时,f(x)取得极大值为1,
f(
| 1 |
| e |
| 2 |
| e |
由函数f(x)=x-xlnx与f(x)=t的图象知
实数t的取值范围为[
| 2 |
| e |
练习册系列答案
相关题目
设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是( )
| A、[-5,5] | ||||||||
B、[-
| ||||||||
C、[-
| ||||||||
D、[-
|