题目内容

20.已知:函数f(x)=lg(1-x)+lg(p+x),其中p>-1
(1)求f(x)的定义域;
(2)若p=1,当x∈(-a,a]其中a∈(0,1),a是常数时,函数f(x)是否存在最小值,若存在,求出f(x)的最小值;若不存在,请说明理由.

分析 (1)运用对数函数的定义域,解不等式即可得到所求定义域;
(2)运用对数的运算性质和对数函数的单调性和二次函数的最值,即可得到所求最值.

解答 解:(1)由题意可得$\left\{\begin{array}{l}{1-x>0}\\{p+x>0}\end{array}\right.$,
即有$\left\{\begin{array}{l}{x<1}\\{x>-p}\end{array}\right.$,由p>-1,可得-p<1,
即有-p<x<1,则函数的定义域为(-p,1);
(2)f(x)=lg(1-x)+lg(1+x)=lg(1-x2),(-a<x≤a),
令t=1-x2,(-a<x≤a),y=lgt,为递增函数.
由t的范围是[1-a2,1],
当x=a时,y=lgt取得最小值lg(1-a2),
故存在x=a,函数f(x)取得最小值,且为lg(1-a2).

点评 本题考查函数的定义域和最值的求法,注意运用函数的单调性,考查运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网