题目内容

如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,PA=AB=2,BC=a,又侧棱PA⊥底面ABCD.

(1)当a为何值时,BD⊥平面PAC?试证明你的结论.

(2)当a=4时,求D点到平面PBC的距离.

(3)当a=4时,求直线PD与平面PBC所成的角.

剖析:本题主要考查棱锥的性质,直线、平面所成的角的计算和点到平面的距离等基础知识.同时考查空间想象能力、逻辑推理能力和计算能力.

解:(1)以A为坐标原点,以AD、AB、AP所在直线分别为x轴、y轴、z轴建立空间直角坐标系,当a=2时,BD⊥AC,又PA⊥BD,故BD⊥平面PAC.故a=2.

    (2)当a=4时,D(4,0,0)、C(0,2,0)、C(4,2,0)、P(0,0,2),=(0,2,-2),=(4,0,0).

    设平面PBC的法向量为n,则n·=0,n·=0,即(x,y,z)·(0,2,-2)=0,(x,y,z)·(4,0,0)=0,得x=0,y=z,取y=1,故n=(0,1,1).则D点到平面PBC的距离d==.

    (3) =(4,0,2),cos〈,n〉==>0,证〈,n〉=α,设直线PD与平面PBC所成的角为θ,则sinθ=sin(-α)=cosα=.

    所以直线PD与平面PBC所成的角为arcsin.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网