题目内容

20.已知抛物线$y=\frac{1}{4}{x^2}$和$y=-\frac{1}{16}{x^2}+5$所围成的封闭曲线,给定点A(0,a),若在此封闭曲线上恰有三对不同的点,满足每一对点关于点A对称,则实数a的取值范围是$(\frac{5}{2},4)$.

分析 由图可知过两曲线的交点的直线与x轴的交点为(0,4),所以a<4.当对称的两个点分属两段曲线时,设其中一个点为(x1,$\frac{{{x}_{1}}^{2}}{4}$),则其对称点为(-x1,2a-$\frac{{{x}_{1}}^{2}}{4}$),将其代入曲线$y=-\frac{1}{16}{x^2}+5$,得到的关于x1的方程的解有且只有两个,进而可得结果.

解答 解:显然,过点A与x轴平行的直线与封闭曲线的两个交点关于点A对称,且这两个点在同一曲线上.
当对称的两个点分属两段曲线时,设其中一个点为(x1,y1),其中y1=$\frac{{{x}_{1}}^{2}}{4}$,且-4≤x1≤4,则其关于点A的对称点为(-x1,2a-y1),
所以这个点在曲线$y=-\frac{1}{16}{x^2}+5$上,
所以2a-y1=-$\frac{1}{16}$x12+5,即2a-$\frac{{{x}_{1}}^{2}}{4}$=-$\frac{1}{16}$x12+5,
所以2a=$\frac{3}{16}$x12+5,即$\frac{3}{16}$x12+5-2a=0,此方程的x1的解必须刚好有且只有两个,
当x1=4时,其对称点的横坐标刚好为-4,故x1≠±4,
于是-4<x1<4,且x1≠0,
∴2a=$\frac{3}{16}$x12+5∈(5,8),即$(\frac{5}{2},4)$.
故答案为:$(\frac{5}{2},4)$.

点评 本题考查点的对称性、一元二次方程根的判别式,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网