题目内容
已知函数f(x)=
•
,其中
=(sinωx+cosωx,
cosωx),
=(cosωx-sinωx,2sinωx),其中ω>0,若相邻两对称轴间的距离不小于
.
(1)求ω的取值范围;
(2)当ω最大时,在△ABC中,若f(A)=1,求∠A.
| m |
| n |
| m |
| 3 |
| n |
| π |
| 2 |
(1)求ω的取值范围;
(2)当ω最大时,在△ABC中,若f(A)=1,求∠A.
(1)f(x)=
•
=(sinωx+cosωx)(cosωx-sinωx)+
cosωx×2sinωx
=(cos2ωx-sin2ωx)+
sin2ωx
=cos2ωx+
sin2ωx
=2sin(2ωx+
)
相邻的对称轴间的距离=
T=
所以,
≥
∴ω≤1
(2)当ω最大时,ω=1
f(x)=2sin(2x+
)
f(A)=2sin(2A+
)=1
sin(2A+
)=
2A+
=
,或,
A=0,或,
因为A>0,所以,A=
| m |
| n |
| 3 |
=(cos2ωx-sin2ωx)+
| 3 |
=cos2ωx+
| 3 |
=2sin(2ωx+
| π |
| 6 |
相邻的对称轴间的距离=
| 1 |
| 2 |
| π |
| 2w |
所以,
| π |
| 2w |
| π |
| 2 |
(2)当ω最大时,ω=1
f(x)=2sin(2x+
| π |
| 6 |
f(A)=2sin(2A+
| π |
| 6 |
sin(2A+
| π |
| 6 |
| 1 |
| 2 |
2A+
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
A=0,或,
| π |
| 3 |
因为A>0,所以,A=
| π |
| 3 |
练习册系列答案
相关题目