题目内容
求和
.
解:∵an=3n+1为等差数列,∴a0+an=a1+an-1=…,而{C}{{k}{n}}={C}{{n-k}{n}},(运用反序求和方法),∵W={C}{0{n}}+4{C}{1{n}}+7{C}{2{n}}+…+(3n-2){C}{{n-1}{n}}+(3n+1){C}{{n}{n}}①,=(3n+1){C}{{n}{n}}+(3n-2){C}{{n-1}{n}}+(3n-5){C}{{n-2}{n}}+…+4{C}{1{n}}+{C}{0{n}}∴W=(3n+1){C}{0{n}}+(3n-2){C}{1{n}}+(3n-5){C}{{n-2}{n}}+…+4{C}{1{n}}+{C}{0{n}}②,①+②得2W=(3n+2)({C}{0{n}}+{C}{1{n}}+{C}{2{n}}+…+{C}{{n}{n}})=(3n+2)×2{n},∴W=(3n+2)×2n-1.
练习册系列答案
相关题目