题目内容
设{an}是公比为q的等比数列,|q|>1,令bn=an+1(n=1,2,…),若数列{bn}有连续四项在集合{-53,-23,19,37,82}中,则q=______.
由题意知,{an}是公比为q的等比数列,
由数列{bn}有连续四项在集合{-53,-23,19,37,82}中,可得{an}有连续四项在集合{-54,-24,18,36,81}中,
由于集合中仅有三个正数,两个负数,故{an}各项中必有两个为负数,所以公比为负即q<0
由于两个负数分别为-54,-24,故q2=
或
,解得q=-
或-
又|q|>1,故q=-
故答案为-
由数列{bn}有连续四项在集合{-53,-23,19,37,82}中,可得{an}有连续四项在集合{-54,-24,18,36,81}中,
由于集合中仅有三个正数,两个负数,故{an}各项中必有两个为负数,所以公比为负即q<0
由于两个负数分别为-54,-24,故q2=
| 9 |
| 4 |
| 4 |
| 9 |
| 3 |
| 2 |
| 2 |
| 3 |
又|q|>1,故q=-
| 3 |
| 2 |
故答案为-
| 3 |
| 2 |
练习册系列答案
相关题目