题目内容
在数列{an}中,已知a1=2,an+1=4an-3n+1,n∈N•.
(1)设bn=an-n,求证:数列{bn}是等比数列;
(2)求数列{an}的前n项和Sn.
(1)设bn=an-n,求证:数列{bn}是等比数列;
(2)求数列{an}的前n项和Sn.
(1)∵
=
=
=
=4,(5分)
且b1=a1-1=1∴bn为以1为首项,以4为公比的等比数列,(7分)
(2)由(1)得bn=b1qn-1=4n-1(8分)∵an=bn+n=4n-1+n,(9分)
∴
=
,(12分)
| bn+1 |
| bn |
| an+1-(n+1) |
| an-n |
| 4an-3n+1-(n+1) |
| an-n |
| 4(an-n) |
| an-n |
且b1=a1-1=1∴bn为以1为首项,以4为公比的等比数列,(7分)
(2)由(1)得bn=b1qn-1=4n-1(8分)∵an=bn+n=4n-1+n,(9分)
∴
|
=
|
练习册系列答案
相关题目