题目内容
已知|
|=3,
=(-1,
),
(1)若
⊥
,求
;
(2)若
∥
,求
.
| a |
| b |
| 3 |
(1)若
| a |
| b |
| a |
(2)若
| a |
| b |
| a |
分析:(1)设
=(x,y),由||
|=3,
=(-1,
),
⊥
,知
,由此能求出
.
(2)设
=(x,y),由|
|=3,
=(-1,
),
∥
,知
,由此能求出
.
| a |
| a |
| b |
| 3 |
| a |
| b |
|
| a |
(2)设
| a |
| a |
| b |
| 3 |
| a |
| b |
|
| a |
解答:解:(1)设
=(x,y),
∵|
|=3,
=(-1,
),
⊥
,
∴
,
解得
,或
,
∴
=(
,
),或
=(-
,-
).
(2):(1)设
=(x,y),
∵|
|=3,
=(-1,
),
∥
,
∴
,
解得
,或
,
∴
=(
,-
),或
=(-
,
).
| a |
∵|
| a |
| b |
| 3 |
| a |
| b |
∴
|
解得
|
|
∴
| a |
3
| ||
| 2 |
| 3 |
| 2 |
| a |
3
| ||
| 2 |
| 3 |
| 2 |
(2):(1)设
| a |
∵|
| a |
| b |
| 3 |
| a |
| b |
∴
|
解得
|
|
∴
| a |
| 3 |
| 2 |
3
| ||
| 2 |
| a |
| 3 |
| 2 |
3
| ||
| 2 |
点评:本题考查平面向量的应用,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关题目
已知|
|=3,|
|=2
,
⊥(
+
),则
在
上的投影为( )
| a |
| b |
| 3 |
| a |
| b |
| a |
| a |
| b |
| A、-3 | ||||
| B、3 | ||||
C、-
| ||||
D、
|