题目内容
直线l1:ax-y+b=0,l2:bx-y+a=0(a≠0,b≠0,a≠b)在同一坐标系中的图形大致是图中的( )
![]()
解析:选C.直线l1:ax-y+b=0,斜率为a,在y轴上的截距为b,
设k1=a,m1=b.直线l2:bx-y+a=0,斜率为b,在y轴上的截距为a,
设k2=b,m2=a.
由A知:因为l1∥l2,k1=k2>0,m1>m2>0,即a=b>0,b>a>0,矛盾.
由B知:k1<0<k2,m1>m2>0,即a<0<b,b>a>0,矛盾.
由C知:k1>k2>0,m2>m1>0,即a>b>0,可以成立.
由D知:k1>k2>0,m2>0>m1,即a>b>0,a>0>b,矛盾.
练习册系列答案
相关题目