题目内容
已知数列{an}中,a1=4,an+1=4-
(n∈N*)
(1)求证:数列{
}是等差数列;
(2)求数列的{an}通项公式an;
(3)记bn=nan(
)n+1,求数列{bn}的前n项和Sn.
| 4 |
| an |
(1)求证:数列{
| 1 |
| an-2 |
(2)求数列的{an}通项公式an;
(3)记bn=nan(
| 1 |
| 2 |
分析:(1)由an+1=4-
(n∈N*)得出an+1-2=2-
,
=
,计算
-
=
,所以数列{
}是等差数列;
(2)通过{
}的通项公式求数列的{an}通项公式an;
(3)bn=nan(
)n+1=(n+1)(
)n,利用错位相消法求和.
| 4 |
| an |
| 4 |
| an |
| 1 |
| an+1-2 |
| an |
| 2(an-2) |
| 1 |
| an+1-2 |
| 1 |
| an-2 |
| 1 |
| 2 |
| 1 |
| an-2 |
(2)通过{
| 1 |
| an-2 |
(3)bn=nan(
| 1 |
| 2 |
| 1 |
| 2 |
解答:解:(1)∵an+1=4-
(n∈N*),
∴an+1-2=2-
,
=
,
∴
-
=
,
=
,所以数列{
}是以
为公差,以
为首项的等差数列;
(2)由(1)得
=
+
(n-1)=
,∴an=
+2,
(3)bn=nan(
)n+1=n(
+2)(
)n+1=(n+1)(
)n,
Sn=2•
+3•(
)2+…+(n+1)(
)n,
∴
Sn=2•(
)2+3•(
)3+…+(n+1)(
)n+1
两式相减,
Sn=1+(
)2+(
)3+…+(
)n-(n+1)(
)n+1
=1+
-(n+1)(
)n+1
=1+
-(
)n-(n+1)(
)n+1,
=
-(n+3)(
)n+1.
∴Sn=3-(n+3)(
)n.
| 4 |
| an |
∴an+1-2=2-
| 4 |
| an |
| 1 |
| an+1-2 |
| an |
| 2(an-2) |
∴
| 1 |
| an+1-2 |
| 1 |
| an-2 |
| 1 |
| 2 |
| 1 |
| a1-2 |
| 1 |
| 2 |
| 1 |
| an-2 |
| 1 |
| 2 |
| 1 |
| 2 |
(2)由(1)得
| 1 |
| an-2 |
| 1 |
| 2 |
| 1 |
| 2 |
| n |
| 2 |
| 2 |
| n |
(3)bn=nan(
| 1 |
| 2 |
| 2 |
| n |
| 1 |
| 2 |
| 1 |
| 2 |
Sn=2•
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
两式相减,
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=1+
| ||||
1-
|
| 1 |
| 2 |
=1+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| 3 |
| 2 |
| 1 |
| 2 |
∴Sn=3-(n+3)(
| 1 |
| 2 |
点评:本题考查数列递推公式、通项公式求解.错位相消法.考查转化构造,推理论证,运算求解能力.属于中档题.
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|