题目内容
若点A(3,3),B(2,4),C(a,10)三点共线,则a的值为
- A.-4
- B.-3
- C.-2
- D.4
A
分析:利用三点A、B、C共线时,
=λ
,两个向量的坐标对应相等,解方程组求得a的值.
解答:∵点A(3,3),B(2,4),C(a,10)三点共线,∴
=λ
,
∴(-1,1)=λ(a-2,6)=(aλ-2λ,6λ ),∴
,∴a=-4,
故选 A.
点评:本题考查三点A、B、C共线的条件是
=λ
,两个向量相等的条件.
分析:利用三点A、B、C共线时,
解答:∵点A(3,3),B(2,4),C(a,10)三点共线,∴
∴(-1,1)=λ(a-2,6)=(aλ-2λ,6λ ),∴
故选 A.
点评:本题考查三点A、B、C共线的条件是
练习册系列答案
相关题目
若点A(3,3),B(2,4),C(a,10)三点共线,则a的值为( )
| A、-4 | B、-3 | C、-2 | D、4 |