题目内容
已知实数x、s、t满足:8x+9t=s,且x>-s,则
【答案】分析:由8x+9t=s知s+x=9x+9t=9(x+t),易得x+t>0,对
变形可得9(x+t)+
,由基本不等式的性质,计算可得答案.
解答:解:由8x+9t=s知s+x=9x+9t=9(x+t),
又x>-s可化x+s>0,所以x+t>0,
从而
=
=
(当且仅当
时取“=”)
点评:本题考查基本不等式的运用,切入点为变形后是积为一定值或和为一定值的情况.
解答:解:由8x+9t=s知s+x=9x+9t=9(x+t),
又x>-s可化x+s>0,所以x+t>0,
从而
(当且仅当
点评:本题考查基本不等式的运用,切入点为变形后是积为一定值或和为一定值的情况.
练习册系列答案
相关题目