题目内容
【题目】已知函数f(x)=x|x﹣2a|+a2﹣4a(a∈R). (Ⅰ)当a=﹣1时,求f(x)在[﹣3,0]上的最大值和最小值;
(Ⅱ)若方程f(x)=0有3个不相等的实根x1 , x2 , x3 , 求
+
+
的取值范围.
【答案】解:(Ⅰ)∵a=﹣1,
∴f(x)=x|x+2|+5=
,
x∈[﹣2,0]时,4≤f(x)≤5,
x∈[﹣3,﹣2]时,2≤f(x)≤5,
∴f(x)min=f(﹣3)=2,f(x)max=f(0)=5;
(Ⅱ)∵f(x)=
,
①若a>0,∵方程f(x)=0有3个不相等的实根,
故x<2a时,方程f(x)=﹣x2+2ax+a2﹣4a=0有2个不相等的实根,
x≥2a时,方程f(x)=x2﹣2ax+a2﹣4a=0有1个不相等的实根,
∴
,解得:2<a<4,
不妨设x1<x2<x3,则x1+x2=2a,x1x2=﹣a2+4a,x3=a+2
,
∴
+
+
=
+
=﹣
>
,
∴
+
+
的范围是(
,+∞),
②若a<0,当x>2a时,方程f(x)=x2﹣2ax+a2﹣4a=0的判别式小于0,
不符合题意;
③a=0时,显然不和题意,
故
+
+
的范围是(
,+∞)
【解析】(Ⅰ)求出f(x)的分段函数的解析式,从而求出函数的最大值和最小值即可;(Ⅱ)通过讨论a的范围,得到
+
+
的表达式,从而求出a的范围即可.
【考点精析】本题主要考查了函数的最值及其几何意义的相关知识点,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值才能正确解答此题.
练习册系列答案
相关题目