搜索
题目内容
设△ABC的BC边上的高AD=BC,a,b,c分别表示角A,B,C对应的三边,则
+
的取值范围是 .
试题答案
相关练习册答案
【答案】
[2,
]..
【解析】略
练习册系列答案
中考分类必备全国中考真题分类汇编系列答案
中考分类集训系列答案
中考复习导学案系列答案
中考复习信息快递系列答案
中考复习指导基础训练稳夺高分系列答案
中考攻略系列答案
南粤学典中考解读系列答案
中考解读考点精练系列答案
中考金牌3年中考3年模拟系列答案
中考精典系列答案
相关题目
设△ABC的BC边上的高AD=BC,a,b,c分别表示角A,B,C对应的三边,则
b
c
+
c
b
的取值范围是
[2,
5
]
[2,
5
]
.
设△ABC的BC边上的高AD=BC,a,b,c分别是内角A,B,C的对边.
(1)求
b
c
+
c
b
的最小值及取得最小值时cosA的值;
(2)把
b
c
+
c
b
表示为xsinA+ycosA的形式,判断
b
c
+
c
b
能否等于
5
?并说明理由.
设△ABC的BC边上的高AD=BC,a,b,c分别表示角A,B,C对应的三边,则
b
c
+
c
b
的取值范围是______.
设△ABC的BC边上的高AD=BC,a,b,c分别表示角A,B,C对应的三边,则
+
的取值范围是
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案