题目内容
求值:x2sin(-1 350°)+y2tan405°-(x-y)2cot765°-2xycos(-1 080°).
解:原式=x2sin(90°-4×360°)+y2tan(45°+360°)-(x-y)2cot(45°+2×360°)-2xycos(0°-3×360°)
=x2sin90°+y2tan45°-(x-y)2cot45°-2xycos0°
=x2+y2-(x-y)2-2xy=0.
练习册系列答案
相关题目
题目内容
求值:x2sin(-1 350°)+y2tan405°-(x-y)2cot765°-2xycos(-1 080°).
解:原式=x2sin(90°-4×360°)+y2tan(45°+360°)-(x-y)2cot(45°+2×360°)-2xycos(0°-3×360°)
=x2sin90°+y2tan45°-(x-y)2cot45°-2xycos0°
=x2+y2-(x-y)2-2xy=0.