题目内容
| lim |
| n→∞ |
| ||||
| (n+1)2 |
分析:因为
+2
=
+2
=
+n(n-1)=
n2-
n,所以
=
,由此能够求出
的值.
| C | 2 n |
| C | n-2 n |
| C | 2 n |
| C | 2 n |
| n(n-1) |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| lim |
| n→∞ |
| ||||
| (n+1)2 |
| lim |
| n→∞ |
| ||||
| n2+2n+1 |
| lim |
| n→∞ |
| ||||
| (n+1)2 |
解答:解:
=
=
=
=
.
| lim |
| n→∞ |
| ||||
| (n+1)2 |
| lim |
| n→∞ |
| ||||
| n2+2n+1 |
| lim |
| n→∞ |
| ||||
| n2+2n+1 |
| lim |
| n→∞ |
| ||||
1+
|
| 3 |
| 2 |
点评:本题考查组合数的计算公式和数列的极限,解题时要注意计算能力的培养.
练习册系列答案
相关题目