题目内容

已知△ABC的内角A、B、C的对边分别为a、b、c,,且c=3.
(1)求角C;
(2)若向量共线,求a、b的值.
【答案】分析:(1)利用二倍角公式及辅助角公式对已知化简可得sin(2C-30°)=1,结合C的范围可求C
(2)由(1)C,可得A+B,结合向量共线的坐标表示可得sinB-2sinA=0,利用两角差的正弦公式化简可求
解答:解:(1)∵

∴sin(2C-30°)=1
∵0°<C<180°
∴C=60°
(2)由(1)可得A+B=120°
共线,
∴sinB-2sinA=0
∴sin(120°-A)=2sinA
整理可得,即tanA=
∴A=30°,B=90°
∵c=3.
∴a=,b=2
点评:本题主要考查了二倍角公式、辅助角公式及两角和的正弦公式、锐角三角函数的综合应用
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网