题目内容
不等式log2(1-x)≤3的解集是________.
[-7,1)
分析:由题意可得 log2(1-x)≤log28,故 0<1-x≤8,解得-7≤x<1.
解答:不等式log2(1-x)≤3 即log2(1-x)≤log28,0<1-x≤8,
解得-7≤x<1,
故不等式log2(1-x)≤3的解集是[-7,1),
故答案为:[-7,1).
点评:本题考查对数函数的单调性和特殊点,对数函数的定义域,求出0<1-x≤8,是解题的关键.
分析:由题意可得 log2(1-x)≤log28,故 0<1-x≤8,解得-7≤x<1.
解答:不等式log2(1-x)≤3 即log2(1-x)≤log28,0<1-x≤8,
解得-7≤x<1,
故不等式log2(1-x)≤3的解集是[-7,1),
故答案为:[-7,1).
点评:本题考查对数函数的单调性和特殊点,对数函数的定义域,求出0<1-x≤8,是解题的关键.
练习册系列答案
相关题目