题目内容
已知椭圆的左、右焦点分别为,离心率为,P是椭圆上一点,且面积的最大值等于2.
(1)求椭圆的方程;
(2)过点M(0,2)作直线与直线垂直,试判断直线与椭圆的位置关系5
(3)直线y=2上是否存在点Q,使得从该点向椭圆所引的两条切线相互垂直?若存在,求点Q的坐标;若不存在,说明理由。
已知M是x轴上一动点,一条直线经过点A(2,1)并且垂直于AM交y轴于N,过点M、N分别作两坐标轴的垂线,设它们的交点为P(x,y),则点P的轨迹方程是( )
A.2x-y-3=0 B.2x+y-5=0 C.x-2y=0 D.x+2y-4=0
(本题满分14分)过点P (1,2)作一条直线,使直线与点M (2,3)和点N (4,-5)的距离相等,求直线的方程.