题目内容
若曲线C:xy=1,过C上一点An(xn,yn)作一斜率为kn=-| 1 |
| xn+2 |
| 11 |
| 7 |
(1)求xn与xn+1的关系式;
(2)若f(x)=
| 1 |
| x-2 |
(3)求证:(-1)x1+(-1)2x2+…+(-1)nxn<1(n∈N*).
分析:(1)由题设条件知kn=
=
=-
,由此可知xn+1xn=xn+2.
(2)由题意知an+1+
=-2 (an+
),由此可知an+
=(-2)n,所以an=(-2)n-
.
(3)由题意知(-1)nxn=2•(-1)n+
,由此入手能够推导出(-1)x1+(-1)2x2++(-1)nxn<1.
| yn+1-yn |
| xn+1-xn |
| ||||
| xn+1-xn |
| 1 |
| xn+1xn |
(2)由题意知an+1+
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
(3)由题意知(-1)nxn=2•(-1)n+
| 1 | ||
2n-
|
解答:解:(1)kn=
=
=-
∴xn+1xn=xn+2(4分)
(2)an=
,则 an+1=
=
=
=-1-2an
∴an+1+
=-2 (an+
)(8分)
又a1+
=-2 ≠0∴{an+
}为等比数列
∴an+
=(-2)n
∴an=(-2)n-
(10分)
(3)xn=2+
,∴(-1)nxn=2•(-1)n+
当n为奇数时,(-1)nxn+(-1)n+1xn+1
=
+
=
<
=
+
(12分)
当n为偶数时,(-1)x1+(-1)2x2++(-1)nxn
<
+
++
+
<
=1(13分)
当n为奇数时,(-1)x1+(-1)2x2++(-1)nxn
<
+
++
+
-2+
=
-1<1
综上,(-1)x1+(-1)2x2++(-1)nxn<1.(14分)
| yn+1-yn |
| xn+1-xn |
| ||||
| xn+1-xn |
| 1 |
| xn+1xn |
∴xn+1xn=xn+2(4分)
(2)an=
| 1 |
| xn-2 |
| 1 |
| xn+1-2 |
| 1 | ||
|
| xn |
| 2-xn |
∴an+1+
| 1 |
| 3 |
| 1 |
| 3 |
又a1+
| 1 |
| 3 |
| 1 |
| 3 |
∴an+
| 1 |
| 3 |
∴an=(-2)n-
| 1 |
| 3 |
(3)xn=2+
| 1 | ||
(-2)n-
|
| 1 | ||
2n-
|
当n为奇数时,(-1)nxn+(-1)n+1xn+1
=
| 1 | ||
2n+
|
| 1 | ||
2n+1-
|
=
| 2n+2n+1 | ||||
(2n+
|
| 2n+2n+1 |
| 2n•2n+1 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
当n为偶数时,(-1)x1+(-1)2x2++(-1)nxn
<
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
| ||
1-
|
当n为奇数时,(-1)x1+(-1)2x2++(-1)nxn
<
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-2 |
| 1 |
| 2n-1 |
| 1 | ||
2n+
|
=
| 1 | ||
2n+
|
综上,(-1)x1+(-1)2x2++(-1)nxn<1.(14分)
点评:本题考查数列性质的综合运用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目