题目内容
已知点
、
,
是直线
上任意一点,以
、
为
焦点的椭圆过点
.记椭圆离心率
关于
的函数为
,那么下列结论正确的是( )
焦点的椭圆过点
| A. | B.函数 |
| C.函数 | D.函数 |
B
分析:由题意可得c=1,椭圆离心率e=
解答:由题意可得c=1,椭圆离心率e=
由椭圆的定义可得PA+PB=2a,a=
由于PA+PB 有最小值而没有最大值,即a有最小值而没有最大值,
故椭圆离心率e 有最大值而没有最小值,故B正确,且 D不正确.
当直线y=x+2和椭圆相交时,这两个交点到A、B两点的距离之和相等,
都等于2a,故这两个交点对应的离心率e相同,故A不正确.
由于当x0的取值趋于负无穷大时,PA+PB=2a趋于正无穷大;
而当当x0的取值趋于正无穷大时,PA+PB=2a也趋于正无穷大,故函数e(x0)不是增函数,故C不正确.
故选B.
练习册系列答案
相关题目