题目内容
设正项等比数列{an}的首项a1=| 1 | 2 |
(Ⅰ)求{an}的通项;
(Ⅱ)求{nSn}的前n项和Tn.
分析:(Ⅰ)由210S30-(210+1)S20+S10=0得210(S30-S20)=S20-S10,由此可推出an=a1qn-1=
,n=1,2,.
(Ⅱ)由题设知Sn=
=1-
,nSn=n-
.数列{nSn}的前n项和Tn=(1+2++n)-(
+
++
),
=
(1+2++n)-(
+
++
+
).由此可知答案.
| 1 |
| 2n |
(Ⅱ)由题设知Sn=
| ||||
1-
|
| 1 |
| 2n |
| n |
| 2n |
| 1 |
| 2 |
| 2 |
| 22 |
| n |
| 2n |
| Tn |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 2 |
| 23 |
| n-1 |
| 2n |
| n |
| 2n+1 |
解答:解:(Ⅰ)由210S30-(210+1)S20+S10=0得210(S30-S20)=S20-S10,
即210(a21+a22+…+a30)=a11+a12+…+a20,
可得210•q10(a11+a12+…+a20)=a11+a12+…+a20.
因为an>0,所以210q10=1,解得q=
,因而an=a1qn-1=
,n=1,2,.
(Ⅱ)由题意知Sn=
=1-
,nSn=n-
.
则数列{nSn}的前n项和Tn=(1+2++n)-(
+
++
),
=
(1+2++n)-(
+
++
+
).
前两式相减,得
=
(1+2++n)-(
+
++
)+
=
-
+
即Tn=
+
+
-2.
即210(a21+a22+…+a30)=a11+a12+…+a20,
可得210•q10(a11+a12+…+a20)=a11+a12+…+a20.
因为an>0,所以210q10=1,解得q=
| 1 |
| 2 |
| 1 |
| 2n |
(Ⅱ)由题意知Sn=
| ||||
1-
|
| 1 |
| 2n |
| n |
| 2n |
则数列{nSn}的前n项和Tn=(1+2++n)-(
| 1 |
| 2 |
| 2 |
| 22 |
| n |
| 2n |
| Tn |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 2 |
| 23 |
| n-1 |
| 2n |
| n |
| 2n+1 |
前两式相减,得
| Tn |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
| n |
| 2n+1 |
| n(n+1) |
| 4 |
| ||||
1-
|
| n |
| 2n+1 |
| n(n+1) |
| 2 |
| 1 |
| 2n-1 |
| n |
| 2n |
点评:本题考查数列知识的综合运用,解题时要认真审题,注意挖掘题设中的隐含条件.
练习册系列答案
相关题目