ÌâÄ¿ÄÚÈÝ

ÒÑÖªº¯Êýf(x)=
4x
4x+2

£¨1£©ÊÔÇóf(
1
n
)+f(
n-1
n
)(n¡ÊN*)
掙术
£¨2£©ÈôÊýÁÐ{an}Âú×ãan=f£¨0£©+f(
1
n
)
+f(
2
n
)
+¡­+f(
n-1
n
)
+f£¨1£©£¨n¡ÊN*£©£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©ÈôÊýÁÐ{bn}Âú×ãbn=2n+1•an£¬SnÊÇÊýÁÐ{bn}ǰnÏîµÄºÍ£¬ÊÇ·ñ´æÔÚÕýʵÊýk£¬Ê¹²»µÈʽknSn£¾4bn¶ÔÓÚÒ»ÇеÄn¡ÊN*ºã³ÉÁ¢£¿Èô´æÔÚÖ¸³ökµÄȡֵ·¶Î§£¬²¢Ö¤Ã÷£»Èô²»´æÔÚ˵Ã÷ÀíÓÉ£®
£¨±¾Ð¡ÌâÂú·Ö16·Ö£©
£¨1£©¡ßf£¨x£©+f£¨1-x£©=
4x
4x+2
+
41-x
41-x+2
=
4x
4x+2
+
4
4+2•4x
=1
¡àf£¨
1
n
£©+f£¨
n-1
n
£©=1£®£¨5·Ö£©
£¨2£©¡ßan=f£¨0£©+f(
1
n
)
+f(
2
n
)
+¡­+f(
n-1
n
)
+f£¨1£©£¨n¡ÊN*£©£¬¢Ù
¡àan=f(1)+f(
n-1
n
)+f(
n-2
n
)
+¡­+f£¨
1
n
£©+f£¨0£©£¨n¡ÊN*£©£¬¢Ú
ÓÉ£¨1£©£¬Öª f£¨
1
n
£©+f£¨
n-1
n
£©=1£¬
¡à¢Ù+¢Ú£¬µÃ2an=n+1£¬
¡àan=
n+1
2
£®£¨10·Ö£©
£¨3£©¡ßbn=2n+1•an£¬¡àbn=(n+1)•2n£¬
¡àSn=2•21+3•22+4•23+¡­+£¨n+1£©•2n£¬¢Ù
¡à2Sn=2•22+3•23+4•24+¡­+n•2n+£¨n+1£©•2n+1£¬¢Ú
¢Ù-¢ÚµÃ-Sn=4+22+23+¡­+2n-(n+1)•2n+1£¬
¼´Sn=n•2n+1£¬£¨12·Ö£©
ҪʹµÃ²»µÈʽknSn£¾4bnºã³ÉÁ¢£¬¼´kn2-2n-2£¾0¶ÔÓÚÒ»ÇеÄn¡ÊN*ºã³ÉÁ¢£¬
n=1ʱ£¬k-2-2£¾0³ÉÁ¢£¬¼´k£¾4£®
Éèg£¨n£©=kn2-2n-2£¬
µ±k£¾4ʱ£¬ÓÉÓÚ¶Ô³ÆÖáÖ±Ïßn=
1
k
£¼1
£¬ÇÒ g£¨1£©=k-2-2£¾0£¬¶øº¯Êýf£¨x£©ÔÚ[1£¬+¡Þ£© ÊÇÔöº¯Êý£¬
¡à²»µÈʽknSn£¾bnºã³ÉÁ¢£¬
¼´µ±k£¾4ʱ£¬²»µÈʽknSn£¾bn¶ÔÓÚÒ»ÇеÄn¡ÊN*ºã³ÉÁ¢ ¡­£¨16·Ö£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø