题目内容
已知x1>1,x2>1,x1x22=100,
+
的最小值等于
- A.4
- B.

- C.

- D.

C
分析:由已知x1>1,x2>1,x1x22=100,可得 lgx1+2lgx2=2,故
+
=
+
=
+
+
,利用基本不等式求得其最小值.
解答:∵已知x1>1,x2>1,x1x22=100,∴lgx1+2lgx2=2,∴
.
∴
+
=
+
=
+
+
≥
+2
=
,当且仅当
=
时,等号成立,
故选C.
点评:本题考查对数的运算性质,基本不等式的应用,式子的变形是解题的关键.
分析:由已知x1>1,x2>1,x1x22=100,可得 lgx1+2lgx2=2,故
解答:∵已知x1>1,x2>1,x1x22=100,∴lgx1+2lgx2=2,∴
∴
故选C.
点评:本题考查对数的运算性质,基本不等式的应用,式子的变形是解题的关键.
练习册系列答案
相关题目
已知x1>1,x2>1,x1x22=100,
+
的最小值等于( )
| 1 |
| lgx1 |
| 3 |
| lgx2 |
| A、4 | ||||
B、
| ||||
C、
| ||||
D、
|