题目内容
已知数列{an}中,a1=-1,且 (n+1)an,(n+2)an+1,n 成等差数列.
(Ⅰ)设bn=(n+1)an-n+2,求证:数列{bn}是等比数列;
(Ⅱ)求{an}的通项公式;
(Ⅲ)(仅理科做) 若an-bn≤kn对一切n∈N*恒成立,求实数k的取值范围.
(Ⅰ)设bn=(n+1)an-n+2,求证:数列{bn}是等比数列;
(Ⅱ)求{an}的通项公式;
(Ⅲ)(仅理科做) 若an-bn≤kn对一切n∈N*恒成立,求实数k的取值范围.
(Ⅰ)证明:(n+2)an+1=
(n+1)an+
,…1分
∵b1=2a1-1+2=-1,…2分(文3分)
=
=
=
=
,
∴数列{bn}是等比数列. …4分(文6分)
(Ⅱ)由(Ⅰ)得bn=-(
)n-1,即(n+1)an-n+2=-(
)n-1.
∴an=-
(
)n-1+
. …6分(文13分)
(Ⅲ)∵an-bn=
(
)n-1+
,
∴an-bn≤kn,即k ≥
(
)n-1+
.
设cn=
(
)n-1,dn=
,en=
(
)n-1+
,
则cn 随着n的增大而减小,…8分
∵dn+1-dn=
-
=
,
∴n≥5时,dn+1-dn<0,dn+1<dndn随着n的增大而减小,…10分
则n≥5时,en随着n的增大而减小. …
∵c1=
,c2=
,c3=
,c4=
,c5=
,
d1=-
,d2=0,d3=
,d4=
,d5=
,
∴e1=0,e2=
,e3=
,e4=
,e5=
.
则e1<e2>e3>e4>e5>….∴e2=
最大.
∴实数k的取值范围k≥
. …13分.
| 1 |
| 2 |
| n |
| 2 |
∵b1=2a1-1+2=-1,…2分(文3分)
| bn+1 |
| bn |
| (n+2)an+1-(n+1)+2 |
| (n+1)an-n+2 |
| ||||
| (n+1)an-n+2 |
| ||||
| (n+1)an-n+2 |
| 1 |
| 2 |
∴数列{bn}是等比数列. …4分(文6分)
(Ⅱ)由(Ⅰ)得bn=-(
| 1 |
| 2 |
| 1 |
| 2 |
∴an=-
| 1 |
| n+1 |
| 1 |
| 2 |
| n-2 |
| n+1 |
(Ⅲ)∵an-bn=
| n |
| n+1 |
| 1 |
| 2 |
| n-2 |
| n+1 |
∴an-bn≤kn,即k ≥
| 1 |
| n+1 |
| 1 |
| 2 |
| n-2 |
| n(n+1) |
设cn=
| 1 |
| n+1 |
| 1 |
| 2 |
| n-2 |
| n(n+1) |
| 1 |
| n+1 |
| 1 |
| 2 |
| n-2 |
| n(n+1) |
则cn 随着n的增大而减小,…8分
∵dn+1-dn=
| n-1 |
| (n+1)(n+2) |
| n-2 |
| n(n+1) |
| 4-n |
| n(n+1)(n+2) |
∴n≥5时,dn+1-dn<0,dn+1<dndn随着n的增大而减小,…10分
则n≥5时,en随着n的增大而减小. …
∵c1=
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 16 |
| 1 |
| 40 |
| 1 |
| 96 |
d1=-
| 1 |
| 2 |
| 1 |
| 12 |
| 1 |
| 10 |
| 1 |
| 10 |
∴e1=0,e2=
| 1 |
| 6 |
| 7 |
| 48 |
| 1 |
| 8 |
| 53 |
| 480 |
则e1<e2>e3>e4>e5>….∴e2=
| 1 |
| 6 |
∴实数k的取值范围k≥
| 1 |
| 6 |
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|