题目内容

10.在四面体ABCD中,已知∠ADB=∠BDC=∠CDA=60°,AD=BD=3,CD=2,则四面体ABCD的外界球的半径为(  )
A.$\sqrt{2}$B.2C.3D.$\sqrt{3}$

分析 设四面体ABCD的外接球球心为O,则O在过△ABD的外心N且垂直于平面ABD的垂线上,且点N为△ABD的中心.设P,M分别为AB,CD的中点,则N在DP上,且ON⊥DP,OM⊥CD,从而可求DM,MN,进而可求四边形DMON的外接圆的直径,即可求得球O的半径.

解答 解:设四面体ABCD的外接球球心为O,则O在过△ABD的外心N且垂直于平面ABD的垂线上.
由题设知,△ABD是正三角形,则点N为△ABD的中心.
设P,M分别为AB,CD的中点,则N在DP上,且ON⊥DP,OM⊥CD.
因为∠CDA=∠CDB=∠ADB=60°,设CD与平面ABD所成角为θ,
∴cosθ=$\frac{1}{\sqrt{3}}$,sinθ=$\frac{\sqrt{2}}{\sqrt{3}}$.
在△DMN中,DM=$\frac{1}{2}CD$=1,DN=$\frac{2}{3}DP$=$\sqrt{3}$.
由余弦定理得MN=$\sqrt{1+3-2×1×\sqrt{3}×\frac{1}{\sqrt{3}}}$=$\sqrt{2}$.
∴四边形DMON的外接圆的半径OD=$\frac{MN}{sinθ}$=$\sqrt{3}$.
故球O的半径R=$\sqrt{3}$.
故选:D.

点评 本题考查四面体ABCD的外接球,考查学生的计算能力,确定四面体ABCD的外接球球心位置是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网