题目内容
19.已知集合{x,x+y}={11,4},x∈Z,y∈N+,则10${\;}^{lg\frac{1}{y-x}}$-($\frac{1}{27}$)${\;}^{\frac{1}{3}}$-(-2)0=-1.分析 利用两集合相等求得x,y的值,代入10${\;}^{lg\frac{1}{y-x}}$-($\frac{1}{27}$)${\;}^{\frac{1}{3}}$-(-2)0,由对数的运算性质得答案.
解答 解:由{x,x+y}={11,4},得
$\left\{\begin{array}{l}{x=11}\\{x+y=4}\end{array}\right.$①或$\left\{\begin{array}{l}{x=4}\\{x+y=11}\end{array}\right.$②.
解①得,x=11,y=-7(舍),
解②得x=4,y=7.
∴10${\;}^{lg\frac{1}{y-x}}$-($\frac{1}{27}$)${\;}^{\frac{1}{3}}$-(-2)0
=$1{0}^{lg\frac{1}{3}}-\frac{1}{3}-1$=-1.
故答案为:-1.
点评 本题考查集合相等的概念,考查了对数的运算性质,是基础题.
练习册系列答案
相关题目
7.方程lg2x-2algx+2-a=0的两根均大于1,则a的取值范围是 ( )
| A. | (-∞,1] | B. | [1,2) | C. | [1,2] | D. | [3,+∞) |
14.在平面直角坐标系xOy中,点A(2,0),M为不等式组$\left\{\begin{array}{l}{x+y≤1}\\{x+1≥0}\\{x-y≤1}\end{array}\right.$,所表示的区域上一动点,则直线AM斜率的取值范围为( )
| A. | [-3,3] | B. | [-2,2] | C. | [-1,1] | D. | [-$\frac{2}{3}$,$\frac{2}{3}$] |