题目内容
已知函数f(x)=x3-x2+
+
,且存在x0∈(0,
),使f(x0)=x0.
(1)证明:f(x)是R上的单调增函数;
(2)设x1=0,xn+1=f(xn);y1=
,yn+1=f(yn),其中n=1,2,…,证明:xn<xn+1<x0<yn+1<yn;
(3)证明:
<
.
| x |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
(1)证明:f(x)是R上的单调增函数;
(2)设x1=0,xn+1=f(xn);y1=
| 1 |
| 2 |
(3)证明:
| yn+1-xn+1 |
| yn-xn |
| 1 |
| 2 |
(1)∵f'(x)=3x2-2x+
=3(x-
)2+
>0,
∴f(x)是R上的单调增函数.
(2)∵0<x0<
,即x1<x0<y1.又f(x)是增函数,
∴f(x1)<f(x0)<f(y1).即x2<x0<y2.
又x2=f(x1)=f(0)=
>0=x1,y2=f(y1)=f(
)=
<
=y1,
综上,x1<x2<x0<y2<y1.
用数学归纳法证明如下:
①当n=1时,上面已证明成立.
②假设当n=k(k≥1)时有xk<xk+1<x0<yk+1<yk.
当n=k+1时,
由f(x)是单调增函数,有f(xk)<f(xk+1)<f(x0)<f(yk+1)<f(yk),
∴xk+1<xk+2<x0<yk+2<yk+1
由①②知对一切n=1,2,都有xn<xn+1<x0<yn+1<yn.
(3)
=
=yn2+xnyn+xn2-(yn+xn)+
≤(yn+xn)2-(yn+xn)+
=[(yn+xn)-
]2+
.
由(Ⅱ)知0<yn+xn<1.
∴-
<yn+xn-
<
,
∴
<(
)2+
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 6 |
∴f(x)是R上的单调增函数.
(2)∵0<x0<
| 1 |
| 2 |
∴f(x1)<f(x0)<f(y1).即x2<x0<y2.
又x2=f(x1)=f(0)=
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 8 |
| 1 |
| 2 |
综上,x1<x2<x0<y2<y1.
用数学归纳法证明如下:
①当n=1时,上面已证明成立.
②假设当n=k(k≥1)时有xk<xk+1<x0<yk+1<yk.
当n=k+1时,
由f(x)是单调增函数,有f(xk)<f(xk+1)<f(x0)<f(yk+1)<f(yk),
∴xk+1<xk+2<x0<yk+2<yk+1
由①②知对一切n=1,2,都有xn<xn+1<x0<yn+1<yn.
(3)
| yn+1-xn+1 |
| yn-xn |
| f(yn)-f(xn) |
| yn-xn |
| 1 |
| 2 |
| 1 |
| 2 |
=[(yn+xn)-
| 1 |
| 2 |
| 1 |
| 4 |
由(Ⅱ)知0<yn+xn<1.
∴-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| yn+1-xn+1 |
| yn-xn |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|