题目内容
(1)有3名大学毕业生,到5个招聘雇员的公司应聘,若每个公司至多招聘一名新雇员,且3名大学毕业生全部被聘用,若不允许兼职,共有多少种不同的招聘方案?(2)有5名大学毕业生,到3个招聘雇员的公司应聘,每个公司只招聘一名新雇员,并且不允许兼职,现假定这3个公司都完成了招聘工作,问共有多少种不同的招聘方案?
解:(1)将5个招聘雇员的公司看作5个不同的位置,从中任选3个位置给3名大学毕业生,则本题即为从5个不同元素中任取3个元素的排列问题,所以不同的招聘方案共有
=5×4×3=60(种).
(2)将5名大学毕业生看作5个不同的位置,从中任选3个位置给3个招聘雇员的公司,则本题仍为从5个不同元素中任取3个元素的排列问题,所以不同的招聘方案共有
=5×4×3=60(种).
练习册系列答案
相关题目
某公司共有六个科室(部门),有4名大学毕业生,要安排到该公司的两个部门且每个部门安排2名,则不同的安排方案种数为( )
| A、A62C42 | ||||||
B、
| ||||||
| C、A62A42 | ||||||
| D、2A62 |