题目内容
16.设复数$z=\frac{2}{-1-i}$,则在复平面内$i•\overline z$对应的点坐标为( )| A. | (1,1) | B. | (-1,1) | C. | (-1,-1) | D. | (1,-1) |
分析 利用复数的运算法则、共轭复数的定义、几何意义即可得出.
解答 解:复数$z=\frac{2}{-1-i}$=$\frac{-2(1-i)}{(1+i)(1-i)}$=-1+i,则在复平面内$i•\overline z$=i•(-1-i)=-i+1对应的点坐标为(1,-1),
故选:D.
点评 本题考查了复数的运算法则、共轭复数的定义、几何意义,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
8.某程序框图如图所示,运行相应该程序,那么输出的k的值是( )

| A. | 4 | B. | 5 | C. | 6 | D. | 7 |