题目内容

已知数列{an}的首项为2,点(an,an+1)在函数y=x+2的图象上
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项之和为Sn,求证
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
<1
(1)点(an,an+1)在函数y=x+2的图象上,∴an+1=an+2,
∴数列{an}是以首项为2公差为2的等差数列,
∴an=2+2(n-1)=2n;
(2)sn=
(2n+2)n
2
=n(n+1),
1
sn
=
1
n(n+1)
=
1
n
-
1
n+1

1
S1
+
1
S2
+
1
S3
+…+
1
Sn
=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)=1-
1
n+1
<1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网