题目内容

已知函数f(x)满足f(2x-1)=
1
2
f(x)+x2-x+2
,则函数f(x)在(1,f(1))处的切线是(  )
A.2x+3y+12=0B.2x-3y+10=0C.2x-y+2=0D.2x-y-2=0
f(2x-1)=
1
2
f(x)+x2-x+2

再边对x求导,∴2f'(2x-1)=
1
2
f'(x)+2x-1.令x=1,
∴2f'(1)=
1
2
f'(1)+1.
∴f'(1)=
2
3

∴y=f(x)在(1,f(1))处的切线斜率为k=
2
3

又在f(2x-1)=
1
2
f(x)+x2-x+2
中令x=1,得f(1)=4
∴函数y=f(x)在(1,f(1))处的切线方程为y-4=
2
3
(x-1),
即2x-3y+10=0.
故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网