题目内容
已知函数f(x)满足f(2x-1)=
f(x)+x2-x+2,则函数f(x)在(1,f(1))处的切线是( )
| 1 |
| 2 |
| A.2x+3y+12=0 | B.2x-3y+10=0 | C.2x-y+2=0 | D.2x-y-2=0 |
∵f(2x-1)=
f(x)+x2-x+2,
再边对x求导,∴2f'(2x-1)=
f'(x)+2x-1.令x=1,
∴2f'(1)=
f'(1)+1.
∴f'(1)=
∴y=f(x)在(1,f(1))处的切线斜率为k=
.
又在f(2x-1)=
f(x)+x2-x+2中令x=1,得f(1)=4
∴函数y=f(x)在(1,f(1))处的切线方程为y-4=
(x-1),
即2x-3y+10=0.
故选B.
| 1 |
| 2 |
再边对x求导,∴2f'(2x-1)=
| 1 |
| 2 |
∴2f'(1)=
| 1 |
| 2 |
∴f'(1)=
| 2 |
| 3 |
∴y=f(x)在(1,f(1))处的切线斜率为k=
| 2 |
| 3 |
又在f(2x-1)=
| 1 |
| 2 |
∴函数y=f(x)在(1,f(1))处的切线方程为y-4=
| 2 |
| 3 |
即2x-3y+10=0.
故选B.
练习册系列答案
相关题目