题目内容

20.设变量x,y满足约束条件$\left\{\begin{array}{l}{2x-y-3≤0}\\{x+y-3≥0}\\{x-2y+3≤0}\end{array}\right.$,则目标函数z=x-y的最大值为(  )
A.-1B.0C.1D.2

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{2x-y-3≤0}\\{x+y-3≥0}\\{x-2y+3≤0}\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{x-2y+3=0}\\{2x-y-3=0}\end{array}\right.$,解得A(3,3),
化目标函数z=x-y为y=x-z.
由图可知,当直线y=x-z过A时,直线在y轴上的截距最小,z有最大值为0.
故选:B.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网