题目内容

10.Sn为数列{an}的前n项和,已知${a_n}>0,4{S_n}=({{a_n}+3})({{a_n}-1}),({n∈{N^*}})$.则{an}的通项公式an=2n+1.

分析 把已知数列递推式变形,可得4Sn=an2+2an-3,进一步得到4Sn+1=an+12+2an+1-3,两式作差可得数列{an}是首项为3、公差d=2的等差数列,则数列通项公式可求.

解答 解:由$4{S}_{n}=({a}_{n}+3)({a}_{n}-1)={{a}_{n}}^{2}+2{a}_{n}-3$,
可知4Sn+1=an+12+2an+1-3,
两式相减得an+12-an2+2(an+1-an)=4an+1
即2(an+1+an)=an+12-an2=(an+1+an)(an+1-an),
∵an>0,∴an+1-an=2,
又∵a12+2a1=4a1+3,
∴a1=-1(舍)或a1=3,
∴数列{an}是首项为3、公差d=2的等差数列,
∴数列{an}的通项公式an=3+2(n-1)=2n+1.
故答案为:2n+1.

点评 本题考查数列的通项公式以及数列求和的计算,利用裂项法是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网