题目内容
在如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,AD=2,AM=1,E为AB的中点.
(Ⅰ)求证:AN∥平面MEC;
(Ⅱ)在线段AM上是否存在点P,使二面角P-EC-D的大小为
?若存在,求出AP的长h;若不存在,请说明理由.
由已知可得四边形BCNM是平行四边形,
所以F是BN的中点.
因为E是AB的中点,
所以AN∥EF.…(7分)
又EF?平面MEC,AN?平面MEC,
所以AN∥平面MEC.…(9分)
又四边形ADNM是矩形,面ADNM⊥面ABCD,∴DN⊥面ABCD,
如图建立空间直角坐标系D-xyz,则D(0,0,0),E(
则
令y=
∴cos<
∴在线段AM上是否存在点P,使二面角P-EC-D的大小为
分析:(I)利用CM与BN交于F,连接EF.证明AN∥EF,通过直线与平面平行的判定定理证明AN∥平面MEC;
(II)对于存在性问题,可先假设存在,即假设x在线段AM上是否存在点P,使二面角P-EC-D的大小为
点评:本题考查存在性问题,直线与平面平行的判断,二面角的求法,考查空间想象能力与计算能力.
练习册系列答案
相关题目