题目内容
数列{an}是等差数列,a2=3,前四项和S4=16.(1)求数列{an}的通项公式;
(2)记Tn=
| 1 |
| a 1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
分析:(1)由a2和S4的值,分别利用等差数列的通项公式及前n项和公式得到关于a1和d的方程组,求出方程组的解得到a1和d的值,写出数列{an}的通项公式即可;
(2)把an的通项公式代入
,利用拆项的方法化简后,列举出T2011的各项,抵消化简后即可求出值.
(2)把an的通项公式代入
| 1 |
| anan+1 |
解答:解:(1)由a2=3,S4=16,根据题意得:
,解得:
,
则an=1+2(n-1)=2n-1;
(2)∵
=
=
(
-
),
∴T2011=
+
+…+
=
+
+…+
+
+…+
=
(1-
+
-
+…+
-
+…+
-
)
=
(1-
)
=
.
|
|
则an=1+2(n-1)=2n-1;
(2)∵
| 1 |
| anan+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴T2011=
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| a2011a2012 |
=
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 2009×2011 |
| 1 |
| 2011×2013 |
| 1 |
| 4021×4023 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2011 |
| 1 |
| 2013 |
| 1 |
| 4021 |
| 1 |
| 4023 |
=
| 1 |
| 2 |
| 1 |
| 4023 |
=
| 2011 |
| 4023 |
点评:此题要求学生熟练掌握等差数列的通项公式及前n项和公式.第2问数列求和的方法是:把an的通项公式代入后,利用拆项的方法得
=
(
-
),列举出各项,抵消可得值.
| 1 |
| anan+1 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
练习册系列答案
相关题目